

DATE: 25 February 2016

I.T.L. (PRODUCT TESTING) LTD.

Test Report According to EN 300 328 V1.9.1: (2015) for

Pointer Telocation

Equipment under test:

Self-Powered Smart Hub

CelloTrack Nano 20 P/N GC9770001-000; CelloTrack Nano 20 3G P/N GC9771004-000*

*See customer's Declaration on page 5

Tested by:

M. Zohar

Approved by: _

D. Shidlowsky

This report must not be reproduced, except in full, without the written permission of I.T.L. (Product Testing) Ltd. This report relates only to items tested.

TABLE OF CONTENTS

1.	GENERAL INFORMATION 1.1 Administrative Information 1.2 Abbreviations and Symbols	 4 4
	1.3 List of Accreditations	7
2.	APPLICABLE DOCUMENTS	8
3.	TEST SITE DESCRIPTION	9
	3.1 Location:	9
	3.2 Shielded Room:	9 a
	3.4 Ground Plane:	9
	3.5 Antenna Mast:	9
	3.6 I urntable:	9
	3.8 E.U.T. Support:	10
	3.9 Test Equipment:	10
4.	SUMMARY OF TEST RESULTS	11
5.	EQUIPMENT UNDER TEST (E.U.T.) DESCRIPTION	13
6.	LIST OF TEST EQUIPMENT	14
-	6.1 Radio Tests	14
7.	E.U.T. MODE OF OPERATION	15
8.	RF OUTPUT POWER	17
	8.1 Test Specification	17
	8.2 Test Procedure	17
•		17
9.	9.1 Test Specification	19 19
	9.2 Test Procedure	19
	9.3 Test Results	19
10.	OCCUPIED CHANNEL BANDWIDTH	21
	10.1 Test Specification	21
	10.3 Test Results	21
11.	TRANSMITTER UNWANTED EMISSION IN THE OOB DOMAIN	23
	11.1 Test Specification	23
	11.2 Test Procedure	23
		23
12.	TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN	25
	12.2 Test Procedure	25
	12.3 Tests Results	26
13.	RECEIVER SPURIOUS EMISSIONS	27
	13.1 Test Specification	27
	13.3 Test Results	27 28
14	INFORMATION AS REQUIRED BY CLAUSE 5.3.1 ACCORDING TO ANNEX F	
15		2/
10.		34
16.	SIGNATURES OF THE E.U.T.S TEST ENGINEERS	36

17.	APPENDI	(A - CORRECTION F	ACTORS	37
	17.1	Correction factors for	CABLE	37
	17.2	Correction factors for	Biconical ANTENNA	38
	17.3	Correction factors for	Horn ANTENNA	39
	17.4	Correction factors for	Log Periodic ANTENNA	40
18.	APPENDI	B - MEASUREMENT	UNCERTAINTY	41

1. General Information

1.1 Administrative Information

Manufacturer:	Pointer Telocation
Manufacturer's Address:	14 Hamelacha St., Rosh Ha'ayin,48091 Israel Tel: +972-3-572-3111 Fax: +972-3-572-3100
Manufacturer's Representative:	Itamar Gohary
Equipment Under Test (E.U.T):	Self-Powered Smart Hub
Equipment Model No.:	CelloTrack Nano 20 P/N GC9770001-000; CelloTrack Nano 20 3G P/N GC9771004-000*
Equipment Serial No.:	Not designated
Date of Receipt of E.U.T:	20.12.2015
Start of Test:	23.12.2015
End of Test:	30.12.2015
Test Laboratory Location:	I.T.L (Product Testing) Ltd. 1 Batsheva St., Lod ISRAEL 7120101
Test Specifications:	EN 300 328 V1.9.1: 2015

*See customer's Declaration on following page.

DECLARATION

Date: 14/2/2016

I HEREBY DECLARE THE FOLLOWING REGARDING THE BELOW MODELS:

#	Product name	P/N
1	CelloTrack Nano 20	GC9770001-000
2	CelloTrack Nano 20 3G	GC9771004-000
3	CelloTrack Nano 10	GC9770002-000
4	CelloTrack Nano 10 3G	GC9771003-000

All of the above models use the same PCB.

These models are all identical except:

- 1. That P/N GC9770001-000 has the Cinterion BGS2-W 2G GSM cellular modem while P/N GC9771004-000 has the Cinterion EHS6A 3G cellular modem.
- 2. That in P/N GC9770002-000 and P/N GC9771003-000 the 2.4GHz transmitter is deactivated by firmware.
- That in both P/N GC9770001-000 and P/N GC9770002-000 have the Cinterion BGS2-W 2G GSM cellular modem while P/N GC9771003-000 and P/N GC9771004-000 both have the Cinterion EHS6A 3G cellular modem.

Please relate to them (from an EMC/RADIO point of view) as the same product.

1600 ROGOV Signature VP R&D Igor Rogoy VP R&Ø Pointer Telocation Inc.

1.2 Abbreviations and Symbols

The following abbreviations and symbols are applicable to this test report:

A/m	ampere per meter
AC	alternating current
AM	amplitude modulation
ARA	Antenna Research Associates
Aux	auxiliary
Avg	average
CDN	coupling-decoupling network
cm	centimeter
dB	decibel
dBm	decibel referred to one milliwatt
dbµV	decibel referred to one microvolt
dbµV/m	decibel referred to one microvolt per meter
DC	direct current
EFT/B	electrical fast transient/burst
EMC	electromagnetic compatibility
ESD	electrostatic discharge
E.U.T.	equipment under test
GHz	gigahertz
HP	Hewlett Packard
Hz	Hertz
kHz	kilohertz
kV	kilovolt
LED	light emitting diode
LISN	line impedance stabilization network
m	meter
mHn	millihenry
MHz	megahertz
msec	millisecond
N/A	not applicable
per	period
QP	quasi-peak
PC	personal computer
RF	radio frequency
RE	radiated emission
sec	second
V	volt
V/m	volt per meter
VRMS	volts root mean square

1.3 List of Accreditations

The EMC laboratory of I.T.L. is accredited by the following bodies:

- 1. The American Association for Laboratory Accreditation (A2LA) (U.S.A.), Certificate No. 1152.01.
- 2. The Federal Communications Commission (FCC) (U.S.A.), FCC Designation Number IL1005.
- 3. The Israel Ministry of the Environment (Israel), Registration No. 1104/01.
- The Voluntary Control Council for Interference by Information Technology Equipment (VCCI) (Japan), Registration Numbers: C-3006, R-2729, T-1877, G-245.
- Industry Canada (Canada), IC File No.: 46405-4025; Site Nos. IC 4025A-1, 4025A-2.

I.T.L. Product Testing Ltd. is accredited by the American Association for Laboratory Accreditation (A2LA) and the results shown in this test report have been determined in accordance with I.T.L.'s terms of accreditation unless stated otherwise in the report.

2. Applicable Documents

2.1 DIRECTIVE 1999/5/EC OF THE EUROPEAN **R&TTE Directive:** 1999 PARLIAMENT AND OF THE COUNCIL of 9 March 1999 on radio equipment and telecommunications terminal equipment and the mutual recognition of their conformity 2.2 EN 300 328 Electromagnetic compatibility and Radio spectrum V1.9.1 (2015-02) Matters (ERM); Wideband transmission systems; Data transmission equipment operating in the 2,4 GHz ISM band and using wide band modulation techniques; Harmonized EN covering essential requirements under article 3.2 of the R&TTE Directive

3. Test Site Description

3.1 Location:

The Electromagnetic Compatibility Test Facility of I.T.L. (Product testing) Ltd. Is located at

Telrad Industrial Park, Lod, 7120101 Israel.

Telephone: +972-8-9153100

Fax: +972-8-9153101

3.2 Shielded Room:

A Modular Shielded Room, Type 20 SpaceSaver, manufactured by ETS, consisting of a Main Room and a Control Room.

The dimensions of the Main Room are: length: 7.0 m, width: 3.0 m, height: 3.0 m.

The shielding performance is:

magnetic field: 60 dB at 10 kHz rising linearly to 100 dB at 100 kHz, electric field: better than 110 dB between 50 MHz and 1 GHz,

plane wave: 110 dB between 50 MHz and 1 GHz.

All the power lines entering the shielded room are filtered.

3.3 Open Site:

The OATS is located on a one floor-building roof. The OATS consists of 3 meter and 10 meter ranges, using a 21.5m X 8.5m solid metal ground plane, a remote controlled turntable and an antenna mast.

3.4 Ground Plane:

The ground plane is made from steel plates, which are welded continuously together. The Ground plane is lies and welded on welded steel construction with vias to allow for water drainage. All the power, control, and signal lines to the turntable and the 3 m and 10m antenna mast outlets are routed in shielded conduits under the plane to the control building.

3.5 Antenna Mast:

ETS model 2070-2. The antenna position and polarization are remote controlled via Fiber Optical Link using ETS/EMCO Dual Controller Type 2090. The antenna position is adjustable between 1-4 meters. Pressurized air is used to power changing the polarity of the antenna.

3.6 Turntable:

ETS model 2087 series. The position of the turntable is remote-controlled via Fiber Optic Link, using ETS/EMCO Dual Controller Type 2090. The turntable is mounted in a pit and its surface is flush with the Open Site Ground Plane. Brushes near the periphery of the turntable ensure good conductive connection to the ground plane. The Turntable maximum load is 1250 Kg.

3.7 EMI Receiver:

Type ESCI7, manufactured by Rohde & Schwarz, being in full compliance with CISPR 16 requirements.

3.8 E.U.T. Support:

Table mounted E.U.T.s are supported during testing on 150 cm high all plastic table.

3.9 Test Equipment:

See details in Section 6.

4. Summary of Test Results

Test	Results
RF Output Power EN 300 328 V1.9.1 (2015-02) Sections 4.3.2.2, 5.3.2	The E.U.T met the performance requirements of the specification.
Power Spectral Density EN 300 328 V1.9.1 (2015-02) Sections 4.3.2.3, 5.3.3	The E.U.T met the performance requirements of the specification.
Duty Cycle, Tx-Sequence, Tx-Gap EN 300 328 V1.9.1 (2015-02) Sections 4.3.2.4, 5.3.2	N/A according to Section 4.3.2.4
Medium Utilization Factor EN 300 328 V1.9.1 (2015-02) Sections 4.3.2.5, 5.3.2	N/A according to Section 4.3.2.5
Adaptivity EN 300 328 V1.9.1 (2015-02) Sections 4.3.2.6, 5.3.7.2.1.2 or 5.3.7.2.1.3	N/A according to Section 4.3.2.6
Occupied Channel Bandwidth EN 300 328 V1.9.1 (2015-02) Sections 4.3.2.7, 5.3.8	The E.U.T met the performance requirements of the specification.
Transmitter Unwanted Emission in the Out-of- Band Domain EN 300 328 V1.9.1 (2015-02) Sections 4.3.2.8, 5.3.9	The E.U.T met the performance requirements of the specification.

Summary of Test Results (cont'd.)

Test	Results
Transmitter Unwanted Emissions in the Spurious Domain EN 300 328 V1.9.1 (2015-02) Sections 4.3.2.9, 5.3.10	The E.U.T met the performance requirements of the specification.
Receiver Spurious Emission EN 300 328 V1.9.1 (2015-02) Sections 4.3.2.10, 5.3.11	The E.U.T met the performance requirements of the specification.
Receiver Blocking EN 300 328 V1.9.1 (2015-02) Sections 4.3.2.11, 5.3.7.2.1.2 or 5.3.7.2.1.3	N/A according to Section 4.3.2.11

5. Equipment Under Test (E.U.T.) Description

CelloTrack Nano 20, P/N: GC9770001-000:

Self-powered Smart hub for Asset & Cargo Management IoT applications supporting 2G cellular communication, GNSS, short range RF and wide sensing capabilities. The E.U.T. contains a Cinterion BGS2 Wireless 2G module

CelloTrack Nano 20 3G, P/N: GC9771004-000:

Self-powered Smart hub for Asset & Cargo Management IoT applications with universal 3G cellular communication, GNSS, short range RF and wide sensing capabilities. The E.U.T. contains a Cinterion EHS6 Wirelss 3G module.

Model name	CelloTrack Nano 20			
Mode of operation	Transceiver BLE			
Working voltage	AC/DC adapter			
Modulations	GFSK			
Frequency Range	2402.0MHz-2480.0MHz			
Transmit power	~8.0dBm			
Antenna Gain	1.7dBi			
Channel BW	>500.0kHZ			
Voltage range for extreme conditions	230.0VAC±10%			
Temperature Range for extreme conditions	-20.0 °C - +60.0 °C			
Ambient Temperature (°C)/ Humidity (%RH)	27.0 °C /40.0%			
*See additional information according to Annex E in section 16.				

Test Report E160024.00

RadioEN 300 328-1 Mas Ver 1.3 21/07/10

6. List of Test Equipment

6.1 Radio Tests

The equipment indicated below by an "X" was used for testing according to EN 300 328 V1.9.1 (2015), Sections 5.3.2; 5.3.3; 5.3.7; 5.3.8, 5.3.9, 5.3.10, 5.3.11.

Test equipment calibration is in accordance with ITL Q.A. Procedure PM 110 "Calibration Control Procedure", which complies with ISO 9002 and ISO/IEC Guide 17025.

				Used in Test			
Instrument	Manufacturer	Model	Serial No.	5.3.2/3	5.3.8/9	5.3.10/11	
Spectrum Analyzer	HP	8592L	3826A01204			Х	
Horn Antenna	ETS	3115	6142	Х		Х	
Biconical Antenna	EMCO	3104	2606			Х	
Log Periodic Antenna	EMCO	3146	9505-4081			Х	
Radi Power USB RF Power Sensor	DARE	RPR3006W	14100048SNO085	Х			
Environmental Chamber	Russells	RBB-2-03-03	9921222	Х	Х		
Signal Generator	al Generator Wiltron 6747B		278007 X			Х	
Power Supply	upply Nemic GEN8-180		-	Х			
Spectrum Analyzer	R&S	FSL6	MY50000243		Х		
20dB Attenuator	0dB Attenuator Bird 8304-N20DB		-	Х	Х		
Semi Anechoic Civil Chamber	Semi Anechoic Civil ETS S81		SL 11643	Х	Х	Х	
Spectrum Analyzer	HP	8592L	3826A01204			Х	
EMI Receiver	HP	8542E	3906A00276			Х	
RF Filter Section	HP	85420E	3705A00248			Х	
Low Noise Amplifier Narda DBS-0411N		DBS-0411N313	13			Х	
Low Noise Amplifier	Low Noise Amplifier Sophia Wireless LNA28-B 232		232			х	
Spectrum Analyzer	HP	8593EM	3536A00120ADI			Х	

7. E.U.T. Mode of Operation

Conducted emission tests were performed with the E.U.T. antenna terminal connected by a RF cable to the Spectrum Analyzer through a 20dB external attenuator.

For radiated emission tests, exploratory emission testing was performed in 3 orthogonal polarities to determine the worst case. The fundamental results are shown in the below table:

Frequency	Y axis	X axis	Z axis
(MHz)	(MHz) (dBuV/m)		(dBuV/m)
2402.0	64.1	64.2	46.5
2440.0	62.4	62.9	58.2
2480.0	61.2	64.2	56.0

Figure 1. Screening Results

According to above results the worst case was the X axis.

The unit was evaluated while transmitting at the low channel (2402MHz), the mid channel (2440MHz) and the high channel (2480MHz) in BLE technology.

Figure 2. Conducted Tests

Figure 3. Radiated Tests

Figure 4. Tested Unit

8. **RF Output Power**

8.1 Test Specification

EN 300 328 V1.9.1 (2015-02), Sections 4.3.2.2; 5.3.2

8.2 Test Procedure

The E.U.T operation mode and test setup are as described in Section 5.3.2 of EN 300 328.

The E.U.T. was connected to an external power supply and thermal chamber temperature and power supply voltage at suitable values were set.

The results achieved by using high speed sensor 1Mb/S.

The E.U.T was evaluated in 3 channels: Low, Mid and High.

The results were recorded.

The configuration tested is shown in the photograph, *Figure 12. RF Output Power Test.*

8.3 Test Results

The E.U.T met the requirements of the EN 300 328 V1.9.1 (2015-02), Sections 4.3.2.2; 5.3.2.

Additional information of the results is given in Figure 5.

RF Output Power

E.U.T Description	Self-Powered Smart Hub
Туре	CelloTrack Nano 20 P/N GC9770001-000
Serial Number:	Not designated

Specification: EN 300 328 V1.9.1 (2015), Sections 4.3.2.2, 5.3.2

Operational	Temperature	Voltage	Reading	Antenna Gain	EIRP	Limit	Margin
Frequency	(° C)	(VAC)	(dBm)	(dBi)	(dBm)	(dBm)	(dB)
	+25°C	230V	7.7	1.7	9.4	20.0	-10.6
	- C0%C	253V	5.6	1.7	7.3	20.0	-12.7
Low	+00°C	207V	5.6	1.7	7.3	20.0	-12.7
	2000	253V	6.1	1.7	7.8	20.0	-12.2
	-20°C	207V	6.1	1.7	7.8	20.0	-12.2
	+25°C	230V	8.0	1.7	9.7	20.0	-10.3
	+60°C	253V	5.6	1.7	7.3	20.0	-12.7
Mid		207V	5.7	1.7	7.4	20.0	-12.6
	-20°C	253V	6.4	1.7	8.1	20.0	-11.9
		207V	6.4	1.7	8.1	20.0	-11.9
	+25°C	230V	8.1	1.7	9.8	20.0	-10.2
	+60°C	253V	5.4	1.7	7.1	20.0	-12.9
High		207V	5.4	1.7	7.1	20.0	-12.9
	2027	253V	5.9	1.7	7.6	20.0	-12.4
	-2010	207V	5.9	1.7	7.6	20.0	-12.4

Figure 5. RF Output Power

9. Power Spectral Density

9.1 Test Specification

EN 300 328 V1.9.1 (2015-02), Sections 4.3.2.3; 5.3.3

9.2 Test Procedure

The E.U.T operation mode and test set-up are as described in section 5.3.3 of EN 300 328.

The configuration tested is shown in Figure 2.

The measurement was performed at normal test conditions and in the lowest, middle and highest operational frequency range.

The RBW was set to 10 kHz and VBW was set to 30 kHz.

Step 1 - Starting from the first 1MHz segment for the lowest frequency, the power of the following samples representing a 1 MHz segment was added up and the results for power and position were recorded. This is the power spectral density (e.i.r.p.) for the first 1 MHz segment which was recorded.

Step 2 - The start point of the samples added up in Step 1 was shifted by 1 sample and the procedure in Step 1 was repeated.

Step 3 –Step 2 was repeated until the end of the data set and the radiated Power Spectral Density values for each of the 1 MHz segments was recorded.

From all the recorded results, the highest value is the maximum Power Spectral Density for the E.U.T.

9.3 Test Results

The E.U.T met the requirements of the EN 300 328 V1.9.1 (2015-02), Sections 4.3.2.3; 5.3.3 specifications.

Additional information of the results is given in Figure 6.

Power Spectral Density

E.U.T Description	Self-Powered Smart Hub
Туре	CelloTrack Nano 20 P/N GC9770001-000
Serial Number:	Not designated

Specification: EN 300 328 V.1.9.1 (2015-06), Sections 4.3.2.3; 5.3.3

Frequency	PSD	Antenna Gain	Total PSD	Limit	Margin
		(UDI)			(UD)
Low	4.0	1.7	5.7	10.0	-4.3
Mid	4.0	1.7	5.7	10.0	-4.3
High	4.1	1.7	5.8	10.0	-4.2

Figure 6. Power Spectral Density

10. Occupied Channel Bandwidth

10.1 Test Specification

EN 300 328 V1.9.1 (2015-02), Sections 4.3.2.7; 5.3.8

10.2 Test Procedure

The E.U.T operation mode and test setup are as described in Section 5.3.8 of EN 300 328.

The lowest operating frequency of the E.U.T. was selected and the highest operating frequency of the E.U.T. was selected.

The RBW was set to ~ 1% from the span. Sweep time was set to 1sec.

The automatic channel bandwidth test was activated at the SA (99% BW).

RMS detector was used for this evaluation

These measurements were performed at normal test conditions.

The configuration tested is shown in the photograph, *Figure 13 Occupied Channel Bandwidth*.

Limit:

Non adaptive with EIRP<10dBm	All bandwidth within 2.4-2.4835GHz

10.3 Test Results

The E.U.T met the requirements of the EN 300 328 V1.9.1 (2015-02), Sections 4.3.2.7; 5.3.8 specifications.

Additional information of the results is given in Figure 7 to Figure 8.

Occupied Channel Bandwidth

E.U.T Description	Self-Powered Smart Hub
Туре	CelloTrack Nano 20 P/N GC9770001-000
Serial Number:	Not designated

Specification: EN 300 328 V1.9.1 (2015-02), Sections 4.3.2.7; 5.3.8

Date: 23.DEC.2015 15:24:46

Date: 23.DEC.2015 15:27:25

Figure 8. High Channel

11. Transmitter Unwanted Emission in the OOB Domain

11.1 Test Specification

EN 300 328 V1.9.1 (2015-02), Sections 4.3.2.8; 5.3.9

11.2 Test Procedure

The E.U.T operation mode and test setup are as described in Section 5.3.9 of EN 300 328.

The lowest operating frequency of the E.U.T. was selected and the highest operating frequency of the E.U.T. was selected.

The limits for OOB were tested according to the limits below.

These measurements were performed at normal conditions.

RMS detector used, number of sweep points was set to 5000.

The configuration tested is shown in the photograph, *Figure 14 Transmitter* Unwanted Emission in the OOB Domain.

Limit:

Low band [MHz]	Limit	High band [MHz]	
2400 to (2400-OBW)	-10dBm/MHz e.i.r.p	2483.5 to (2483.5 +OBW)	
(2400-OBW) to (2400-2OBW)	-20dBm/MHz e.i.r.p	(2483.5 +OBW) to (2483.5 +2OBW)	
(2400-2OBW) and below	-30dBm/MHz e.i.r.p	(2483.5 +2OBW) and above	

11.3 Test Results

The E.U.T met the requirements of the EN 300 328 V1.9.1 (2015-02), Sections 4.3.2.8; 5.3.9 specifications.

Additional information of the results is given in Figure 9 to Figure 10.

Transmitter Unwanted Emission in the OOB Domain

E.U.T Description	Self-Powered Smart Hub
Туре	CelloTrack Nano 20 P/N GC9770001-000
Serial Number:	Not designated

Specification:

EN 300 328 V1.9.1 (2015-02), Sections 4.3.2.8; 5.3.9

Date: 23.DEC.2015 15:34:05

Figure 10. High Channel, 25°C°, Nominal Voltage

12. Transmitter Unwanted Emissions in the Spurious Domain

12.1 Test Specification

EN 300 328 V1.9.1 (2015-02) Sections 4.3.2.9, 5.3.10

12.2 Test Procedure

The test was performed in the frequency band 30MHz –12.75GHz.

For 30MHz-1000MHz range:

A preliminary measurement to characterize the E.U.T was performed inside the shielded room at a distance of 3 meters, using peak detection mode and broadband antennas. The preliminary measurements produced a list of the highest emissions. The E.U.T was then transferred to the open site, and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 1.5 meters above the ground. The configuration tested is shown in Figure 3.

The frequency range 30 MHz-1000 MHz was scanned.

RBW was set to 100 kHz.

The emissions were measured using a computerized EMI receiver complying with CISPR 16 requirements.

The readings were maximized by adjusting the antenna height between 1-4 meters, the turntable azimuth between $0-360^{\circ}$, and the antenna polarization.

1000MHz-12,750MHz range:

The E.U.T was placed in the chamber and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 1.5 meters above the ground. The configuration tested is shown in Figure 3.

The frequency range 1000 MHz-12750 MHz was scanned.

RBW was set to 1000 kHz.

The readings were maximized by adjusting the turntable azimuth between $0-360^{\circ}$ and the antenna polarization.

For all the tests a RMS detector was used.

The E.U.T. was replaced by a substitution antenna. The substitution antenna was driven by a signal generator operating in C.W. Mode. The height of the test antenna was adjusted for maximum level.

The input signal of the substitution antenna was adjusted to the level that produced a receiver reading equal to the level noted while the spurious emissions of the E.U.T. were measured.

The above tests were performed in both horizontal and vertical polarizations.

The transmitter was set to the lowest operating frequency and to the highest operating frequency.

The spurious emission was calculated as follows: Signal Generator Level (dBm) – Cable Loss (dB) + Substitution Antenna Gain (dB).

The E.U.T was evaluated in Tx mode.

Pointer Telocation

12.3 Tests Results

The E.U.T met the specification EN 300 328 V1.9.1 (2015-02) Sections 4.3.2.8, 5.3.10 requirements

Additional information of the results is given in *Figure 11*.

Antenna Distance: 3 meters

Operating Frequency: Low, High

Freq operation	Freq.	E	Ant.pol.	Power Output Generator	Cable Loss	Gain Antenna	ERP	Spec.	Margin
(MHz)	(MHz)	$(dB\mu V /m)$	(V /H)	(dBm)	(dB)	(dB)	(dBm)	(dBm)	(dB)
2402.0	4804.0	50.1	Н	-52.0	0.5	10.8	-41.7	-30.0	-11.7
2402.0	4804.0	50.5	V	-52.7	0.5	10.8	-42.4	-30.0	-12.4
2480.0	4960.0	48.9	Н	-52.2	0.5	10.8	-41.9	-30.0	-11.9
2480.0	4960.0	50.2	V	-52.4	0.5	10.8	-42.7	-30.0	-12.7

Figure 11. Transmitter Spurious Emissions

Note: Margin refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.

13. Receiver Spurious Emissions

13.1 Test Specification

EN 300 328 V1.9.1 (2015-02) Sections 4.3.2.10, 5.3.11

13.2 Test Procedure

The test was performed in the frequency band 30MHz –12.75GHz.

For 30MHz1000MHz range:

A preliminary measurement to characterize the E.U.T was performed inside the shielded room at a distance of 3 meters, using peak detection mode and broadband antennas. The preliminary measurements produced a list of the highest emissions. The E.U.T was then transferred to the open site, and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 1.5 meters above the ground. The configuration tested is shown in Figure 3.

The frequency range 30 MHz-1000 MHz was scanned.

RBW was set to 100 kHz.

The emissions were measured using a computerized EMI receiver complying with CISPR 16 requirements.

The readings were maximized by adjusting the antenna height between 1-4 meters, the turntable azimuth between $0-360^{\circ}$, and the antenna polarization.

For 1000MHz-12,750MHz range:

The E.U.T was placed in the chamber and placed on a remote-controlled turntable. The E.U.T was placed on a non-metallic table, 1.5 meters above the ground. The configuration tested is shown in Figure 3.

The frequency range 1000 MHz-12750 MHz was scanned.

RBW was set to 1000 kHz.

The readings were maximized by adjusting the turntable azimuth between $0-360^{\circ}$ and the antenna polarization.

For all the tests a RMS detector was used.

The E.U.T. was replaced by a substitution antenna.

The substitution antenna was driven by a signal generator operating in C.W. Mode. The height of the test antenna was adjusted for maximum level.

The input signal of the substitution antenna was adjusted to the level that produced a receiver reading equal to the level noted while the spurious emissions of the E.U.T. were measured.

The above tests were performed in both horizontal and vertical polarizations.

The transmitter was set to the lowest operating frequency and to the highest operating frequency.

The spurious emission was calculated as follows:

Signal Generator Level (dBm) – Cable Loss (dB) + Substitution Antenna Gain (dB).

The E.U.T was evaluated in Rx mode.

13.3 Test Results

The E.U.T met the requirements of EN 300 328 V1.9.1 (2015-02) Sections 4.3.2.9, 5.3.11 specification.

All signals were below the EMI receiver noise level which is at least 6dB below the specification limit.

14. Information as Required by Clause 5.3.1 According to Annex E

a) The type of modulation used by the equipment:

- □ FHSS
- \boxtimes other forms of modulation

b) In case of FHSS modulation:

In case of non-Adaptive Frequency Hopping equipment:

The number of Hopping Frequencies: N/A

In case of Adaptive Frequency Hopping Equipment:

- The maximum number of Hopping Frequencies: N/A
- The minimum number of Hopping Frequencies: N/A
- The Dwell Time: N/A
- The Minimum Channel Occupation Time: N/A

c) Adaptive / non-adaptive equipment:

- non-adaptive Equipment
- adaptive Equipment without the possibility to switch to a non-adaptive mode
- adaptive Equipment which can also operate in a non-adaptive mode

d) In case of adaptive equipment:

The Channel Occupancy Time implemented by the equipment: 40 ms

- \Box The equipment has implemented an LBT based DAA mechanism
 - In case of equipment using modulation different from FHSS:
 - The equipment is Frame Based equipment
 - The equipment is Load Based equipment
 - □ The equipment can switch dynamically between Frame Based and Load Based equipment

The CCA time implemented by the equipment: μs

- The value q as referred to in clause 4.3.2.5.2.2.2
- The equipment has implemented an non-LBT based DAA mechanism
- \Box The equipment can operate in more than one adaptive mode

e) In case of non-adaptive Equipment:

The maximum RF Output Power (e.i.r.p.): ...N/A (system is adaptive)...dBm

The maximum (corresponding) Duty Cycle: N/A (system is adaptive).....%

Equipment with dynamic behaviour, that behaviour is described here. (e.g. the different combinations of duty cycle and corresponding power levels to be declared): N/A (system is adaptive)

f) The worst case operational mode for each of the following tests:

• RF Output Power

All modes limited to +10dBm per Spec (need discussion on whether customer

implements different power profiles for advertising and connected states for example) spec • Power Spectral Density

- Should be identical in all modes (advertising and/or connected)
- Duty cycle, Tx-Sequence, Tx-gap

N/A: Only applicable to non-adaptive equipment

• Dwell time, Minimum Frequency Occupation & Hopping Sequence (only for FHSS equipment)

N/A: Only applicable for FHSS systems

- Hopping Frequency Separation (only for FHSS equipment)
 - N/A: Only applicable for FHSS systems
- Medium Utilisation

N/A: Only applicable to non-adaptive equipment

• Adaptivity & Receiver Blocking

N/A: Only applicable to systems transmitting > +10dBm

Occupied Channel Bandwidth

Should be identical in all modes (advertising and/or connected)

• Transmitter unwanted emissions in the OOB domain

Should be identical in all modes (advertising and/or connected)

- Transmitter unwanted emissions in the spurious domain
 - Should be identical in all modes (advertising and/or connected)
- Receiver spurious emissions

Should be identical in all modes (advertising and/or connected)

g) The different transmit operating modes (tick all that apply):

- Operating mode 1: Single Antenna Equipment
 - \boxtimes Equipment with only 1 antenna
 - □ Equipment with 2 diversity antennas but only 1 antenna active at any moment in time
 - □ Smart Antenna Systems with 2 or more antennas, but operating in a (legacy) mode where only 1 antenna is used. (e.g. IEEE 802.11TM [i.3] legacy mode in smart antenna systems)
- Operating mode 2: Smart Antenna Systems Multiple Antennas without beam forming
 - □ Single spatial stream / Standard throughput / (e.g. IEEE 802.11TM [i.3] legacy mode)
 - □ High Throughput (> 1 spatial stream) using Occupied Channel Bandwidth 1
 - □ High Throughput (> 1 spatial stream) using Occupied Channel Bandwidth 2

NOTE: Add more lines if more channel bandwidths are supported.

 \square Operating mode 3: Smart Antenna Systems - Multiple Antennas with beam forming \square Single spatial stream / Standard throughput (e.g. IEEE 802.11[™] [i.3] legacy mode) High Throughput (> 1 spatial stream) using Occupied Channel Bandwidth 1 High Throughput (> 1 spatial stream) using Occupied Channel Bandwidth 2 NOTE: Add more lines if more channel bandwidths are supported. h) In case of Smart Antenna Systems: The number of Receive chains: The number of Transmit chains: symmetrical power distribution \square asymmetrical power distribution In case of beam forming, the maximum beam forming gain: NOTE: Beam forming gain does not include the basic gain of a single antenna. i) Operating Frequency Range(s) of the equipment: Operating Frequency Range 1: 2402 MHz to 2480 MHz Operating Frequency Range 2: MHz to MHz NOTE: Add more lines if more Frequency Ranges are supported. j) Occupied Channel Bandwidth(s): Occupied Channel Bandwidth 1: 1.2 MHz Occupied Channel Bandwidth 2: MHz NOTE: Add more lines if more channel bandwidths are supported. k) Type of Equipment (stand-alone, combined, plug-in radio device, etc.): \boxtimes Stand-alone \square Combined Equipment (Equipment where the radio part is fully integrated within another type of equipment) Plug-in radio device (Equipment intended for a variety of host systems) \square \square Other I) The extreme operating conditions that apply to the equipment: Operating temperature range: -20° C to $+60^{\circ}$ C Operating voltage range: 4.5V to 5.5V AC DC Details provided are for the: Stand-alone equipment Combined (or host) equipment □test jig m) The intended combination(s) of the radio equipment power settings and one or more antenna assemblies and their corresponding e.i.r.p levels: Antenna Type: \mathbf{X} Integral Antenna Antenna Gain: 1.72 dBi If applicable, additional beamforming gain (excluding basic antenna gain): dB Temporary RF connector provided No temporary RF connector provided \square Dedicated Antennas (equipment with antenna connector) Single power level with corresponding antenna(s) \square **Pointer Telocation** Page 31 of 41 Test Report E160024.00 RadioEN 300 328-1 Mas Ver 1.3 21/07/10

NOTE 1: Add more lines in case the equipment has more power levels.

NOTE 2: These power levels are conducted power levels (at antenna connector). For each of the Power Levels, provide the intended antenna assemblies, their corresponding gains (G) and the resulting e.i.r.p. levels also taking into account the beamforming gain (Y) if applicable

Power Level 1: dBm

Number of antenna assemblies provided for this power level:

Assembly #	Gain (dBi)	e.i.r.p. (dBm)	P/N or Model Name
1			
2			
3			
4			

Number of antenna assemblies provided for this power level:

Assembly #	Gain (dBi)	e.i.r.p. (dBm)	P/N or Model Name
1			
2			
3			
4			

NOTE: Add more rows in case more antenna assemblies are supported for this power level. **Power Level 3:** dBm

Number of antenna assemblies provided for this power level:

Assembly #	Gain (dBi)	e.i.r.p. (dBm)	P/N or Model Name
1			
2			
3			
4			

NOTE: Add more rows in case more antenna assemblies are supported for this power level.

n) The nominal voltages of the stand-alone radio equipment or the nominal voltages of the combined (host) equipment or test jig in case of plug-in devices:

Details provided are for the: Stand-alone equipment Combined (or host) equipment Itest jig Supply Voltage AC mains State AC voltage V DC State DC voltage 5.0 V In case of DC, indicate the type of power source Internal Power Supply External Power Supply or AC/DC adapter Battery Other:

o) Describe the test modes available which can facilitate testing:

Direct Test Mode is available, but shouldn't be required for this (especially given regulatory certification test is performed at the product level whereas DTM is component (chip) level functionality)

p) The equipment type (e.g. Bluetooth[®], IEEE 802.11[™] [i.3], proprietary, etc.): Bluetooth low energy.

15. Set Up Photographs

Figure 12. RF Output Power Test

Figure 13 Occupied Channel Bandwidth

Figure 14 Transmitter Unwanted Emission in the OOB Domain

Figure 15 Spurious Emission (Tx/Rx) Test

16. Signatures of the E.U.T's Test Engineers

Test	Test Engineer Name	Signature	Date
RF Output Power	M. Zohar	CAP .	30/12/2015
Power Spectral Density	M. Zohar	CAP .	
Occupied Channel Bandwidth	M. Zohar	CAP .	
Transmitter Unwanted Emission in the Out-of-Band Domain	M. Zohar	(Ca)	
Transmitter Unwanted Emission in Spurious Domain	M. Zohar	A.	
Receiver Spurious Emission	M. Zohar	Car	

17. APPENDIX A - CORRECTION FACTORS

17.1 Correction factors for

CABLE

from EMI receiver to test antenna at 3 meter range.

Frequency	Cable Loss	Frequen	ncy Cable Loss
(MHz)	(dB)	(MHz)	(dB)
0.010	0.4	50.00	1.2
0.015	0.2	100.00	0.7
0.020	0.2	150.00) 2.1
0.030	0.3	200.00) 2.3
0.050	0.3	300.00) 2.9
0.075	0.3	500.00) 3.8
0.100	0.2	750.00) 4.8
0.150	0.2	1000.0	0 5.4
0.200	0.3	1500.0	0 6.7
0.500	0.4	2000.0	0 9.0
1.00	0.4	2500.0	0 9.4
1.50	0.5	3000.0	0 9.9
2.00	0.5	3500.0	0 10.2
5.00	0.6	4000.0	0 11.2
10.00	0.8	4500.0	0 12.1
15.00	0.9	5000.0	0 13.1
20.00	0.8	5500.0	0 13.5
		6000.0	0 14.5

NOTES:

- 1. The cable type is SPUMA400 RF-11N(X2) and 39m long
- 2. The cable is manufactured by Huber + Suhner

17.2

Correction factors for **Biconical ANTENNA** Model: 3104 Antenna serial number: 2606 3 meter range

Near free space antenna factor, dB/m Geometry specific correction factor, dB Free space antenna factor, dB/m ¹⁾ Frequency, MHz 12.97 0.13 12.84 30 35 12.34 0.09 12.25 40 12.03 0.06 11.97 45 11.42 0.02 11.40 0.03 11.88 50 11.91 11.92 0.37 11.55 60 70 9.60 0.25 9.35 7.44 80 6.99 -0.45 90 10.87 -0.34 11.21 11.57 -0.06 100 11.51 120 13.30 0.20 13.10 -0.01 12.57 140 12.56 14.61 160 14.49 -0.12 180 16.53 0.05 16.48 15.30 0.15 15.15 200

CALIBRATION DATA

 $^{1)}$ The antenna factor shall be added to receiver reading in dBµV to obtain field strength in dBµV/m.

.

17.3 Correction factors for Horn ANTENNA Model: 2115

Model: 3115 *Antenna serial number: 6142* 3 meter range

	Antenna		Antenna
FREQUENCY	Factor	FREQUENCY	Factor
(MHz)	(dB/m)	(MHz)	(dB/m)
1000	23.9	10500	38.4
1500	25.4	11000	38.5
2000	27.3	11500	39.4
2500	28.5	12000	39.2
3000	30.4	12500	39.4
3500	31.6	13000	40.7
4000	33	14000	42.1
4500	32.7	15000	40.1
5000	34.1	16000	38.2
5500	34.5	17000	41.7
6000	34.9	17500	45.7
6500	35.1	18000	47.7
7000	35.9		
7500	37.5		
8000	37.6		
8500	38.3		
9000	38.5		
9500	38.1		
10000	38.6		

17.4 Correction factors for Log Periodic ANTENNA Model: 3146 Antenna serial number: 9606-4081 3 meter range

CALIBRATION DATA

Frequency, MHz	Antenna factor, dB/m ¹⁾
200	11.55
250	11.60
300	14.43
400	15.38
500	17.98
600	18.78
700	21.17
800	21.16
900	22.67
1000	24.09

 11 The antenna factor shall be added to receiver reading in dB_{\mu}V to obtain field strength in dB_{\mu}V/m.

18. APPENDIX B - MEASUREMENT UNCERTAINTY

Occupied Channel Bandwidth	7.7*10. ⁻⁸ up to 2.9 GHz and 1.2*107 from 2.9GHz to 12.75GHz.
RF output power, conducted	± 25.53% or ±0.99dB, Up to 2.9GHz and ± 26.91% or ±1.03dB from 2.9GHz to 12.75GH
Power Spectral Density, conducted	\pm 25.53% or $\pm 0.99dB,$ Up to 2.9GHz and \pm 26.91% or $\pm 1.03dB$ from 2.9GHz to 12.75GH
Unwanted Emissions, conducted	± 25.53% or ±0.99dB, Up to 2.9GHz and ± 26.91% or ±1.03dB from 2.9GHz to 12.75GH
All emissions, radiated	± 4.58 dB Up to 2.9GHz, and ± 2.92 dB from 2.9GHz to 12.75GHz
Duty Cycle	± 25.53% or ±0.99dB, Up to 2.9GHz and ± 26.91% or ±1.03dB from 2.9GHz to 12.75GH